Thin film nano solar cells--from device optimization to upscaling.
نویسندگان
چکیده
Stainless steel based dye solar cells have been upscaled from small, laboratory size test cells of 0.32 cm2 active area to 6 cm x 6 cm "mini-modules" with active areas ca. 15 cm2. Stainless steel works as the photoelectrode substrate whilst the counter electrode is prepared on indium-doped tin oxide coated polyethyleneterephtalate or polyethylenenaphtalate plastic foil (fluorine-doped tin oxide coated glass as a reference). Additional current collector structures were deposited on the counter electrode substrate with inkjet-printing of silver nanoparticle ink in order to reduce the lateral resistance of the plastic foil. Flexible substrates enable roll-to-roll type industrial manufacturing of the cells and the steel's superior conductivity compared to the typical substrate materials such as glass and plastic makes it possible to prepare even substantially larger modules. The best efficiencies obtained this far with the "mini-module" using a stainless steel photoelectrode are 2.5% with a platinum-sputtered indium-doped tin oxide coated polyethyleneterephtalate counter electrode and 3.4% with a thermally platinized fluorine-doped tin oxide coated glass counter electrode. These efficiencies are on the same level than those measured with small cells prepared with similar methods and materials (3.4%-4.7%, depending on configuration, which are amongst the highest reported for this kind of a dye solar cell). Replacing expensive conducting glass with steel and plastic foils as the substrate materials leads also to economical savings in the cell production.
منابع مشابه
Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملOptimization of Annealing Process for Totally Printable High-current Superstrate CuInS2 Thin-Film Solar Cells
Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. A titanium dioxide blocking layer and an In2S3 buffer layer are deposited by the spray pyrolysis method. A CIS2 absorber layer is deposited by the spin coating method using CIS ink prepared by a 1-butylamine solvent-based solution at room temperature. To obtain optimum annealin...
متن کاملDesign of Silicon Nano-Bars Anti-Reflection Coating to Enhance Thin Film Solar Cells Efficiency
In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer wit...
متن کاملInvestigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application
CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...
متن کاملNano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells
Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at...
متن کاملPreparation of Nanocrystalline CdS Thin Films by a New Chemical Bath Deposition Route for Application in Solar Cells as Antireflection Coatings
Nanocrystalline cadmium sulfide thin films as antireflection materials for solar cells have been prepared by a new chemical solution deposition route in an aqueous medium at 50 °C. as-deposited thin films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption spectra. X-ray diffraction data indicated the formation of hexagonal na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2010